\(\int \frac {1}{\sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \, dx\) [1029]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F(-2)]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 35, antiderivative size = 137 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \, dx=\frac {i}{f \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{3 a f (c-i c \tan (e+f x))^{3/2}}-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{3 a c f \sqrt {c-i c \tan (e+f x)}} \]

[Out]

-2/3*I*(a+I*a*tan(f*x+e))^(1/2)/a/c/f/(c-I*c*tan(f*x+e))^(1/2)+I/f/(a+I*a*tan(f*x+e))^(1/2)/(c-I*c*tan(f*x+e))
^(3/2)-2/3*I*(a+I*a*tan(f*x+e))^(1/2)/a/f/(c-I*c*tan(f*x+e))^(3/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.086, Rules used = {3604, 47, 37} \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \, dx=-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{3 a c f \sqrt {c-i c \tan (e+f x)}}-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{3 a f (c-i c \tan (e+f x))^{3/2}}+\frac {i}{f \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \]

[In]

Int[1/(Sqrt[a + I*a*Tan[e + f*x]]*(c - I*c*Tan[e + f*x])^(3/2)),x]

[Out]

I/(f*Sqrt[a + I*a*Tan[e + f*x]]*(c - I*c*Tan[e + f*x])^(3/2)) - (((2*I)/3)*Sqrt[a + I*a*Tan[e + f*x]])/(a*f*(c
 - I*c*Tan[e + f*x])^(3/2)) - (((2*I)/3)*Sqrt[a + I*a*Tan[e + f*x]])/(a*c*f*Sqrt[c - I*c*Tan[e + f*x]])

Rule 37

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + 2, 0] && NeQ
[m, -1]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))), Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[Simplify[m + n + 2], 0] &&
 NeQ[m, -1] &&  !(LtQ[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (
SumSimplerQ[m, 1] ||  !SumSimplerQ[n, 1])

Rule 3604

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[a*(c/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(a c) \text {Subst}\left (\int \frac {1}{(a+i a x)^{3/2} (c-i c x)^{5/2}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {i}{f \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}+\frac {(2 c) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x} (c-i c x)^{5/2}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {i}{f \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{3 a f (c-i c \tan (e+f x))^{3/2}}+\frac {2 \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x} (c-i c x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{3 f} \\ & = \frac {i}{f \sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}}-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{3 a f (c-i c \tan (e+f x))^{3/2}}-\frac {2 i \sqrt {a+i a \tan (e+f x)}}{3 a c f \sqrt {c-i c \tan (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.62 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.57 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \, dx=\frac {1+2 i \tan (e+f x)+2 \tan ^2(e+f x)}{3 c f (i+\tan (e+f x)) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}} \]

[In]

Integrate[1/(Sqrt[a + I*a*Tan[e + f*x]]*(c - I*c*Tan[e + f*x])^(3/2)),x]

[Out]

(1 + (2*I)*Tan[e + f*x] + 2*Tan[e + f*x]^2)/(3*c*f*(I + Tan[e + f*x])*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*
Tan[e + f*x]])

Maple [A] (verified)

Time = 0.83 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.64

method result size
risch \(-\frac {i \left ({\mathrm e}^{4 i \left (f x +e \right )}+6 \,{\mathrm e}^{2 i \left (f x +e \right )}-3\right )}{12 c \sqrt {\frac {a \,{\mathrm e}^{2 i \left (f x +e \right )}}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, \left ({\mathrm e}^{2 i \left (f x +e \right )}+1\right ) \sqrt {\frac {c}{{\mathrm e}^{2 i \left (f x +e \right )}+1}}\, f}\) \(88\)
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (2 i \left (\tan ^{3}\left (f x +e \right )\right )+2 \left (\tan ^{4}\left (f x +e \right )\right )+2 i \tan \left (f x +e \right )+3 \left (\tan ^{2}\left (f x +e \right )\right )+1\right )}{3 f a \,c^{2} \left (\tan \left (f x +e \right )+i\right )^{3} \left (-\tan \left (f x +e \right )+i\right )^{2}}\) \(109\)
default \(\frac {\sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \left (2 i \left (\tan ^{3}\left (f x +e \right )\right )+2 \left (\tan ^{4}\left (f x +e \right )\right )+2 i \tan \left (f x +e \right )+3 \left (\tan ^{2}\left (f x +e \right )\right )+1\right )}{3 f a \,c^{2} \left (\tan \left (f x +e \right )+i\right )^{3} \left (-\tan \left (f x +e \right )+i\right )^{2}}\) \(109\)

[In]

int(1/(a+I*a*tan(f*x+e))^(1/2)/(c-I*c*tan(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/12*I/c/(a*exp(2*I*(f*x+e))/(exp(2*I*(f*x+e))+1))^(1/2)/(exp(2*I*(f*x+e))+1)/(c/(exp(2*I*(f*x+e))+1))^(1/2)*
(exp(4*I*(f*x+e))+6*exp(2*I*(f*x+e))-3)/f

Fricas [A] (verification not implemented)

none

Time = 0.23 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.81 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \, dx=\frac {\sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} {\left (-i \, e^{\left (6 i \, f x + 6 i \, e\right )} - 7 i \, e^{\left (4 i \, f x + 4 i \, e\right )} + 4 i \, e^{\left (3 i \, f x + 3 i \, e\right )} - 3 i \, e^{\left (2 i \, f x + 2 i \, e\right )} + 4 i \, e^{\left (i \, f x + i \, e\right )} + 3 i\right )} e^{\left (-i \, f x - i \, e\right )}}{12 \, a c^{2} f} \]

[In]

integrate(1/(a+I*a*tan(f*x+e))^(1/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/12*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1))*(-I*e^(6*I*f*x + 6*I*e) - 7*I*e^(4*I*
f*x + 4*I*e) + 4*I*e^(3*I*f*x + 3*I*e) - 3*I*e^(2*I*f*x + 2*I*e) + 4*I*e^(I*f*x + I*e) + 3*I)*e^(-I*f*x - I*e)
/(a*c^2*f)

Sympy [F]

\[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \, dx=\int \frac {1}{\sqrt {i a \left (\tan {\left (e + f x \right )} - i\right )} \left (- i c \left (\tan {\left (e + f x \right )} + i\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(1/(a+I*a*tan(f*x+e))**(1/2)/(c-I*c*tan(f*x+e))**(3/2),x)

[Out]

Integral(1/(sqrt(I*a*(tan(e + f*x) - I))*(-I*c*(tan(e + f*x) + I))**(3/2)), x)

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \, dx=\text {Exception raised: RuntimeError} \]

[In]

integrate(1/(a+I*a*tan(f*x+e))^(1/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is undefined.

Giac [F]

\[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \, dx=\int { \frac {1}{\sqrt {i \, a \tan \left (f x + e\right ) + a} {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/(a+I*a*tan(f*x+e))^(1/2)/(c-I*c*tan(f*x+e))^(3/2),x, algorithm="giac")

[Out]

integrate(1/(sqrt(I*a*tan(f*x + e) + a)*(-I*c*tan(f*x + e) + c)^(3/2)), x)

Mupad [B] (verification not implemented)

Time = 0.45 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.85 \[ \int \frac {1}{\sqrt {a+i a \tan (e+f x)} (c-i c \tan (e+f x))^{3/2}} \, dx=\frac {\sqrt {\frac {a\,\left (\cos \left (2\,e+2\,f\,x\right )+1+\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}\,\left (\cos \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}+2\,\sin \left (2\,e+2\,f\,x\right )-3{}\mathrm {i}\right )}{6\,a\,c\,f\,\sqrt {\frac {c\,\left (\cos \left (2\,e+2\,f\,x\right )+1-\sin \left (2\,e+2\,f\,x\right )\,1{}\mathrm {i}\right )}{\cos \left (2\,e+2\,f\,x\right )+1}}} \]

[In]

int(1/((a + a*tan(e + f*x)*1i)^(1/2)*(c - c*tan(e + f*x)*1i)^(3/2)),x)

[Out]

(((a*(cos(2*e + 2*f*x) + sin(2*e + 2*f*x)*1i + 1))/(cos(2*e + 2*f*x) + 1))^(1/2)*(cos(2*e + 2*f*x)*1i + 2*sin(
2*e + 2*f*x) - 3i))/(6*a*c*f*((c*(cos(2*e + 2*f*x) - sin(2*e + 2*f*x)*1i + 1))/(cos(2*e + 2*f*x) + 1))^(1/2))